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ANALYTICAL SOLUTION OF A FLOW 
BOUNDARY LAYER SEPARAT 

PROBLEM IN THE NEIGHBOURHOOD OF THE 
ION POINT ON A MOVING SURFACE* 

An accurate solution to a previously formulated boundary value problem 
/l/ for the boundary layer (BL) equations describing flow in the neighbour- 
hood of the separation point on a moving surface is obtained. 
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V.V. SYCHEV 

The plane stationary flow of a viscous incompressible liquid in the neighbourhood of a 
release point on a surface which is moving downstream at a constant velocity is examined. As 
a result of the asymptotic analysis of the Navier-Stokes equations with large Reynolds 
numbers (R) it has been established /2/ that in the neighbourhood of the release point there 
is a region of interaction between the BL and the outer potential flow where a large un- 
favourable selfinduced pressure gradient is acting (the longitudinal and transverse dimensions 
of this region are quantities of the order of RdiS,see Fig.1). Upstream of this region, the 
flow is described by the BL equations; the pressure distribution outside this region is given 
(locally) by the solution of the theory of potential flows of an ideal liquid with free 
streamlines. The selfinduced pressure gradient leads to intense deceleration of the liquid 
inside the BL but does not cause flow separation, i.e. the appearance of a return flow in the 
interaction region /3/. 

Fig.1 

Subsequent analysis showed /l/ that the separation point must lie in a 
inside the BL, at a short distance upstream of the interaction region. The 
presentation of the solution of the Navier-Stokes equations (as R+m) for 
the form 

z = LA&, y = LA-"'I' 

9 = UmLR-"' [Y, + A&o (z', y') + . . .I 
P = pm + pUca* WPO (5’) + . . .I 

Aa = ,,‘&-‘h, o (In @)‘I. = &I*, R = L&,v 

region situated 
asymptotic 
this region take 

iq 

*Prikl.Matem.Mekhan.,51,3,519-521,1987 



406 

Here Ox and Oy are axes of a Cartesian rectangular system of coordinates directed 
parallel to the moving surface of the solid and perpendicular to it, respectively; the origin 
of the system of coordinates is placed in the region under investigation; q,p,k,. are functions 
of the flow, pressure and density; 'y, is the streamline on which the separation point lies; 
ucil and poO are the velocity and pressure on a free streamline; L is the characteristic 
dimension of the solid. 

The required function Yu(~',Y') in (l), as usual, satisfies the Prandtl BL 
a previously unknown pressure gradient pfo(zo) and the conditions for matching 
solutions in neighbouring regions serve as the boundary conditions. Using the 

I' = TO In a0 -t y0x 
y' =x a,-'Y + Q-lx + (3a&1 In [3KV(4a.)] 

00 = WJoY, PO = ao4yo2P 
To = [(V,) kwl-“a, a0 = (k/Z) (3lZC3)"' 

the boundary value problem for flow in the region under investigation becomes 

sly aayr sly a=yr dP av 
-- 
aY axaY -aXm-tJy=aYS 

aayr 
Y -=--pj- = 0 (Y = O), Y-eexp(Y-XX) (Y-co) 

Y-2 exp(-x)shY,P-+-z2exp(-2X)(X---ca) 
Y - X (exp N - 1), N = Y - X - In X, N = 0 (1) 
Y- - xv, q= Y/X, q= O(l), P- --‘/z (AZ - 00) 

equation with 
with the 
transformations 

(2) 

(3) 

Transformations (2) enable us to eliminate the arbitrary constants (from the point of 
view of local consideration) ao,k, the first of which characterizes the BL profile approaching 
the separation point, while the second one determines the separation point in the scale of 
the body /2/. (Compared with the formulation of the problem given in /l/ an additional shift 
along the OX' axis is completed here and inaccuracies in these equations are corrected). 

The most important difference between boundary 

:--li. value problem (3) and corresponding problems of 
separation on a stationary surface (see /4/ is that, 
as Y-m, there is exponential growth of the 
longitudinal component of the velocity vector 
(u=Yy) and not according to a power law. This 
is due to the fact that, in the case being examined, 
interaction leads to BL formation, transversely 
to which, the longitudinal componentofthevelocity 
component (J.J varies (close to its minimum line) 

-2 0 2 X proportional to the change in the stream function 
(0). The exponential dependence for the pressure 

Fig.2 P(X) as X-i--m follows from the matching with 
the solution in the interaction region. 

Another distinguishing feature of the problem under examination is that the thickness of 
the displacement at the outer boundary is specified 

whereas the pressure distribution remains unknown and, consequently, must be found when solving 
the problem. (Further details can be found in /l/). 

The solutions of boundary value problems for Prandtl's equations for a specified dis- 
placement thickness and the usual adhesion conditions at the wall, as was first shown in /5/, 
have a regular behaviour at the point of zero surface friction and may therefore describe 
real flows with return streams /6, 7/. 

Non-linear boundary problems for flows in which flow separation takes place are usually 
solved, by numerical methods (see /4/). The solution to problem (3) proves to be surprisingly 
simple; it is written in the explicit form: 

Y = 2 exp (-X) sh Y - I-, P = --1/z - 2 exP (-2x) (4) 

In accordance with the Muir-Putter-Searscriterion (see/S/) at the separationpointthe friction 
and the longitudinal component of the velocity vector simultaneously vanish: Y~=Yyyy=O. 

Fromtheexpression for the stream function (4) the longitudinal coordinate of the 
separation point Xs =ln2 and the field of streamlines represented in Fig.2 are found. In 
this figure the streamlines Y == 0; 0.5; 1.5; 2.5; 3.5; 4.5 were constructed in the return flowregion 
dY<O)and lines were drawn in steps of Y of 0.5. 
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TRANSPORT EQUATIONS FOR A FIBROUS CONSOLIDATABLE MATERIAL 
AND THE NEAR-WALL LAYER EFFECT* 

N.N. KALININ and B.M. NULLER 

The motion of a consolidatable two-phase rod, a fluid-saturated solid 
elastic porous cylinder, is examined in a cylindrical tube. The effect 
of the formation and evolution of a near-wall layer is explained 
qualitatively on the basis of this model. Formulas for the layer thick- 
ness and the pore pressure and obtained from the consolidation equations 
in one limiting case. 

Unlike hydraulic transport at low concentrations, the transport of 
highly-concentrated fibrous materials containing 6-25% solid substance 
/l-3/ is realized because of the origination of a fluid near-wall layer 
which reduces the drag tenfold. The theory of this kind of transport 
has not yet been developed, and existing hydraulic transport models of 
low-concentration suspensions are not acceptable for this purpose. A 
highly-concentrated fibrous material is described below by the consolida- 
tion equations in the linear approximation. 

1. The theory of linear and non-linear consolidation was developed principally in 
connection with questions of soil mechanics /4-8/. Without taking account of the bulk forces 
the linear equations of consolidation of a two-phase isotropic porous medium have the form 

/5/ 
G,Au f G, (1 - ZY$1 grad div u f (HI - f)grad p = L (1.1) 
aR/at - kAp = 0, 9 = H, div u -I- (8, f HOP 

Here u is the elastic displacement vector, v1 is Poisson's ratio, G, is the shear modulus, 
k is the filtration coefficient of the porous medium, p is the fluid pressure in its pores, 
t is the time, f is the porosity, i.e., the magnitude of the intercommunication pore Volume 
per unit volume of the porous medium, the other closed pores are considered to be part of 
the solid phase of the skeleton (they substantially diminish the elastic moduli of both the 
solid phase and the medium as a whole), 0 is the change in fluid content per unit volume of 
the medium, and Hi (i= 1,2,3,4) are the volume strain parameters of the porous medium, its 
liquid and solid phases. 
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